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In the past ten years, convolutional neural networks (CNN) have radically altered the landscape of
computer vision and image processing and have attained cutting-edge performance in comparison to the
traditional machine learning algorithms. Due to their ability to automatically learn hierarchical representations
from raw input, CNNs have become a powerful tool for analyzing complex information in a wide variety of
domains, from object recognition, classification, detection, and medical image analysis, to autonomous
driving. The rising popularity has led to their incorporation into the pharmaceutical industry to evaluate
massive chemical libraries, anticipate drug-target interactions, optimize drug design, and find innovative
drug candidates that are both effective and specific. In this article, a broad overview of CNN's applications
is provided in different pharmaceutical-associated domains.
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Introduction

Convolutional neural networks (CNNs), deep learning
(DL), and multilayer neural networks based on
neuroscience findings have revolutionized the field
of computer vision in recent years, achieving state-
of-the-art results in tasks such as image
classification, object detection, and segmentation.1

Before CNNs, artificial neural networks (ANNs)
required the use of laborious, manual feature
extraction techniques to identify objects in images
or perform classification. CNN, an extended version
of ANN, offers a more scalable method for object
recognition and image classification by extracting
features from grid-like datasets, implementing matrix
multiplication and other concepts from linear algebra
to find patterns and excel at analyzing inputs such
as images, text, speech, audio or video,
distinguishing them from other neural networks.2

CNNs process the images by assigning weights and
biases to several aspects of the input images using
four fundamental processes: convolution, inclusion
of nonlinearity, pooling, and classification.3 Figure
1 is an illustration of the architecture of CNN.

The convolutional layer (CL) is CNN's main building
unit where most computing occurs. It requires input
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data (a color image composed of a 3D pixel matrix
where an image's three dimensions — height, width,
and depth — correspond to RGB (red, green, blue)),
a filter, and a feature map.4 A filter, also referred to
as a feature detector or kernel, is a two-dimensional
array (n * n) of weights that determines the
receptive field size. A filter traverses through the
image to check for the feature by calculating a dot
product between the filter weights and input pixels
and carries out various operations (blurring,
sharpening, edge detection, or detecting an explicit
feature) to capture the temporal and spatial
dependencies of the image.5 The dot product is
then fed into an output array followed by a filter
shift using a step (stride). The procedure is repeated
till the filter has swept across the entire image. The
final filter data, i.e., a series of dot products,
generates a feature map (2D array of output values),
also known as an activation map or convolved
feature. This entire process is called convolution.
After each convolution operation, CNNs add
nonlinearity to the feature map using rectified linear
unit (ReLU) transformation.6 ReLU, the most popular
activation function with biological stimulation,
transforms each neuron’s output and maps it to the
highest possible value or zero if negative.7 The first
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CL can be followed by another CL, thus making the
CNN's structure hierarchical, where later layers can
perceive pixels from previous layers' receptive fields.
Pooling layers (PL), commonly known as
downsampling layers, reduce the dimensions by
reducing the number of input parameters. The pooling
operation sweeps a filter across the entire input,
akin to the CL; however, unlike the CL, the filter
does not have any weights associated with it.
Instead, the filter applies an aggregation function
on the values that are included inside the receptive
field and returns only the most significant information
from the feature map, which is passed to successive
layers until the last layer.8 The most common forms
of pooling are maximum (Max) and average pooling.
Max pooling, most frequently used, selects the pixel
with the maximum value to send to the output array
as the filter advances over the input. The average
pooling method, as the name suggests, computes
the average value inside the receptive field as it
traverses the input and sends that information to
the output array. Even though the pooling layer
loses information, it improves CNN’s efficiency and
reduces the complexity and overfitting risk.9 The
fully connected layer (FCL) has each output layer
node connecting directly to a previous layer node,
in contrast to previous partially connected layers
where input pixel values are not directly coupled to
the output layer. The FCL gathers (flattens) all
features extracted by the preceding layers and their

filters to perform the classification task using softmax
activation functions, i.e., to categorize inputs with
a probability from 0 to 1. There are three different
types of CNNs, including 1D, 2D, and 3D CNNs,
depending on the input data or problem. The 1D
CNN, often used with time series data or molecular
features of compounds, shifts the filter in a single
direction. The 2D CNNs are employed in image
processing and classification tasks where the filter
traverses the image in two directions. The 3D CNN
utilizes 3D images from MRI or CT scans and has a
kernel that moves in three directions.

The drug design and development cycle for novel
drugs (small-molecule) faces several obstacles,
including high cost-to-market, minimal success in
clinical trials, and lengthy cycle periods.10 Despite
high expenses, the pharmaceutical industry's drug
productivity continues to decline.  Several factors
contribute to this trend, including the complexity of
obtaining approvals for novel chemical compounds,
market saturation, and the tendency to spend in
both developed and developing markets, among
others. The potential of CNNs goes beyond computer
vision, as evidenced by their successful application
in a diverse range of f ields, including the
pharmaceutical industry.11 Their ability to
analyze complex datasets and make predictions on
a range of molecular properties has led to their
widespread use in the pharmaceutical industry over

Figure 1: A simplified diagram of the applicability domain of CNN architecture.
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the past decade, where they are used for everything
from drug design and discovery to medication safety
reviews (Fig 2). This review article explores various
applications of CNNs in pharmaceutical sciences,
including drug discovery and design,
pharmacokinetics and pharmacodynamics, drug
formulation and delivery, pharmaceutical
manufacturing, diagnosis of disease, and
classification of its progression.

Drug discovery and design

Drug design is a multifaceted process that involves
designing molecules, identifying and optimizing lead
compounds that are capable of interacting with
specific targets in the human body or possess
desirable drug-like properties. Drug development
relies heavily on protein-ligand scoring because it
allows researchers to reduce the vast chemical space
to a manageable number of molecules for further
study. CNNs have been applied in various stages of
drug design and discovery, including virtual screening,
de novo drug design, and structure-activity
relationship (SAR) analysis as well as in generating
novel compounds with desired properties. The input
to the CNN is usually a SMILES notation or 3D
representation of the drug molecule or target
receptor, and the output is a predicted affinity score
or novel compounds with the desired structure or
property. Once a CNN model is trained on a large
dataset of known drug-target interactions or
compounds, it can be used to screen a large
database of compounds to discover potential drug
candidates that are likely to bind to the target or
similar to the training set compounds. This can greatly
speed up the process by plummeting the number of

Figure 2. A diagrammatic illustration of CNN
applicability in a pharmaceutical domain.

compounds that need to be experimentally tested.
Several prediction models have been reported, each
capable of designing or generating molecules based
on the training set data. Segler et al. used SMILES
notations of more than two lakh drug-like molecules
from the ZINC database to generate novel molecules
that were similar to the training set. The generated
molecules were successfully evaluated based on their
similarity to the training set and their drug-like
properties.12 In a similar study, a 3D chemical
structure was used to train cycle-consistent
adversarial networks (CycleGAN) for successfully
generating novel compounds with similar attributes
to those of the training set and predicting their
drug-likeness properties.13 CycelGAN is an image-
to-image translation model that comprises two
generators and two discriminators. The generator
is a neural network that learns to create new data
samples similar to a training dataset from noise data,
while the discriminator is another neural network
that learns to distinguish between real and generated
data. Together, they are trained in an adversarial
process to produce high-quality synthetic data. A
prototype-driven diversity network, also called a
generative chemistry architecture, was proposed
by Harel et al. that incorporates an encoder
(responsible for mapping real data samples to a
lower-dimensional space), CNN, and recurrent neural
network (RNN; a feedback-connected network that
processes sequential data by maintaining state
information from prior inputs) components to build
diverse molecules with molecular template-like
features without explicit prior chemical knowledge.14
Maziarka et al. introduced a novel approach called
Mol-CycleGAN for molecular optimization in drug
discovery. The authors proposed the use of a
CycleGAN to learn the mapping between molecular
structures and their corresponding properties. By
training the Mol-CycleGAN on a dataset of molecules
with known properties, the model generated new
molecules with desired properties, thereby
showcasing its potential as a powerful tool for
molecular optimization in drug design and discovery.

There has been extensive usage of CNN algorithms
in virtual screening to automatically extract features
from the two- or three-dimensional structure of a
receptor (protein or gene) to predict its binding
affinities to a ligand and identify potential drug
candidates.15 AtomNet, the first structure-based
deep CNN application to predict binding affinity, was
trained with ChEMBL dataset (comprising 78,000
actives and 2,000,000 decoys, spanning 290 targets)
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using a 3D grid technique to encrypt the binding
site surroundings of individual atoms into voxelized
feature vectors.16 The voxelized feature vector is
a 3D grid of voxels, each of which represents an
object's color, texture, material, and other
characteristics. Another structure-based virtual
screening study employed densely connected CNNs
and a transfer learning approach (use of a pre-
trained model to start a new task and allows the
model to leverage knowledge learned from one
domain to another) to create protein family-specific
models that outperformed the machine learning (ML)
benchmark models.17 An ensemble model
(combination of multiple models) based on CNN was
reported by Paul et al. to improve structure-based
drug design using a dataset of 22.5 million ligand
poses docked into various binding locations across
the Protein Data Bank (CrossDocked2020 dataset).
The ensemble model classified binding positions and
selected poses appropriately.18 Shayakhmetov et
al. constructed a CNN model for gene-specific virtual
screening using the SMILES strings of 3,000
chemicals from the ChEMBL database to identify
chemicals that activate specific genes in a
transcriptome with an accuracy of 80%.19 Another
CNN model reported by Ragoza et al. used a 3D grid
point of a protein-ligand complex, where the atom
densities are stored at each grid point,20 to classify
correct and incorrect protein-ligand binding poses
and scores for binding and nonbinding pairs. The
multichannel topological neural network
(TopologyNet) by Cang et al. uses a topological
approach to represent the 3D biomolecular
geometry21 while maintaining important biological
information to predict binding affinities. Other
published models to forecast drug-receptor binding
affinity based on drug SMILES, drug maximum
common substructure, amino acid sequence,
information about protein domains and motifs, and
more are DeepDTA,22 WideDTA,23 DeepAffinity,24

and PADME25.

The potential use of CNN in drug development and
material chemistry was made possible by DeepChem,
a Python program. It has the potential to streamline
many steps in the drug development process,
including virtual screening, molecular property
prediction, and molecule production. The platform
is intuitive and flexible, allowing researchers to fine-
tune their models for usage with a wide variety of
datasets and queries.26 Several parallel CNN
architectures were trained to identify chemicals
based on their toxicity and to predict the activity

of certain drugs utilizing molecular descriptors,
images, and genomic data. Some models reported
attaining accuracies as high as 99%, albeit this
ranged widely depending on the dataset and the
model employed. Overall, CNNs have shown great
promise in drug design and discovery and have the
potential to revolutionize the field by enabling the
design of new drugs more quickly and cost-
effectively than traditional methods.

Pharmacokinetics and Pharmacodynamics

Pharmacokinetics (PK) and pharmacodynamics (PD)
are important aspects of drug development that
involve the study of the absorption, distribution,
metabolism, and excretion (ADMET) of drugs, as
well as their effects on the body. CNNs have been
used to predict the PK and PD properties of drugs
such as solubility, toxicity, and bioactivity, based
on their chemical structure and physicochemical
properties. Chemception, a deep CNN model, predicts
periodicity, molecular descriptors and fingerprints,
toxicity, activity, and solvation characteristics using
2D molecular images.27 Several groups have applied
CNNs using molecular properties to predict various
properties, such as aqueous solubility,28 blood-brain
permeability,29 etc. Recently, graph convolutional
neural networks (GCNN),30 a variant of CNN has
been successfully applied for predicting molecular
properties.31 GCNN first turns the topology of a
molecule into a graph, with bonds as the edges and
atoms as the nodes. It then creates hierarchical
representations of molecules based on how far apart
the bonds are around the atomic centers. This
encoding gives "neural fingerprints'' that are rich,
multiscale vectorial representations of molecules that
are fed into additional layers of the neural network
to classify activity.32

Additionally, CNNs have been applied in the
development of personalized dosing regimens based
on patient-specific factors. Deep-dose, a novel CNN-
based method for estimating the distribution of
personalized internal radiation dosage, leverages
information from medical imaging scans to construct
a personalized 3D model of a patient's anatomy. It
effectively predicted the radiation dose distribution
with an average error of less than 10%.33 Similarly,
another study reported the development of a CNN
model using computed tomography (CT) images and
contour masks as input to predict the dose
distribution for nasopharyngeal carcinoma patients
(NPC) treated with tomotherapy with high precision.
The model provides a therapeutically viable result
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and a training strategy for a dose prediction model
experimentally.34 Another study explored the
application of the CNN model (Tox_R) to predict
toxicity from DNA-specific fluorescent probe (DAPI)-
stained cell images using several drugs with different
toxicity mechanisms. Tox_R was able to automatically
generate feature maps that categorized drugs by
mechanism of action and further extrapolated the
results to categorize nuclei and predict per-cell
toxicity from raw screening images using fully
automated region-based CNNs (RCNN).35 Future
studies may incorporate genomic and proteome data
into the CNNs framework to improve PK and PD
prediction and enable personalized treatment.

Disease Diagnosis and progression

CNNs have performed exceptionally well in diagnosing
diseases using data from various imaging techniques
such as radiology, magnetic resonance (MR), CT, X-
ray, and microscope imaging.36 CNN training
traditionally began with image pre-processing,
including scaling and augmentation. Data
augmentation randomly selects a few images to flip
vertically and horizontally, adjust height and breadth,
and zoom up to a certain percentage. CNN models
have demonstrated promising applications in the
diagnosis of diabetic retinopathy,37 skin lesion
classification,38 identif ication of lymph node
metastasis,39 lung nodule classif ication,40-42

gastrointestinal disease classification,43-45

tuberculosis,46 and cancers such as breast cancer,47

brain tumors,48 lung cancer,49,50 etc.  Several
researchers have reported the successful
implementation of CNN algorithms, with high
accuracy, to diagnose infections from chest X-rays,
which could aid in the early identification and care
of COVID-19 patients.51-54 One such system is
COVID-Net, an open-source diagnosis system, based
on a deep CNN for detecting COVID-19 patients
using X-ray images.55 Mahmud et al. designed a
deep CNN architecture, CovXNet, that makes use
of depthwise convolution with different dilation rates
to extract various features from chest X-rays.56

Another intelligent diagnostic system using switch-
controllable nanocatcher and CNN has been
developed by Feng et al. to analyze pathological
images for Cryptococcus infections (a common cause
of illness and death in HIV/AIDS patients).57

In addition to classifying medical images, CNNs have
also been used to identify or annotate the regions
of abnormality within the images, for example,
segmentation of tumor region in the uterus,58,59

polyps in the colon,60 l iver,61 etc. For this,
a probability map of the organ or anatomical
structure is first constructed using CNN and image
patches, and then the segmentation is refined
utilizing both the probability map and the overall
context of the images. Unlike MR, ultrasound, and
CT, microscope imaging has complex characteristics.
Stains, background clutter, inhomogeneous intensity,
contacting or overlapping nuclei/cells, etc., make it
difficult to manually interpret pathology images. Due
to their ability to learn complex features and
patterns, CNNs have been successfully implemented
to identify the cell nucleus, cell count, cell area,
and mitosis in the microscopic images of different
cancers (brain, lung, cervical, and brain tumors)
without prior knowledge.62-70 In a nutshell, various
studies have underlined the promising role of CNN-
based intelligent diagnostic systems for early and
fast diagnosis of diseases with high sensitivity and
specificity.

Drug-Drug Interactions

Interactions between drugs are referred to as drug-
drug interactions (DDIs) which are classified as
synergistic, antagonistic, or neutral. DDIs are crucial
to drug development and disease detection, yet
they require substantial investments of time, money,
and resources.71,72 The earlier DDI prediction models
focused on the biological interactions between drugs
only rather than the intricate atomic interactions.
In contrast, the CNN-based DDI prediction models
built are more robust and account for atomic
interactions. The CNN model described by Liu et al.
was the first to apply the CNN algorithm for DDI
prediction based on position embeddings and word
embeddings, which capture the relative distances
between words and semantic information of words
for two drugs of interest.73 Quan et al. resolved
the three major issues associated with extracting
biological relations from medical records (namely
vocabulary gap, incorporation of semantic
information, and manual feature selection) by
integrating the CNN framework with multichannel
word embedding (MCCNN) to predict DDI.74 MCNN
consists of three components: improving word
representation by increasing vocabulary and
decreasing unfamiliar words, application of attention
mechanism, and using DL models for prediction.
DeepCNN, a 10-layer CNN architecture, showed
improvement in extracting DDI information by building
a high-quality learning representation of long input
sequences using multi-channel word embedding.75
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CNN-DDI, a semi-supervised CNN system (comprising
of five convolutional, two fully connected, and a
CNN-based softmax layer) by Zhang et. al. predicts
DDI and associated events using input vectors
comprising feature interactions from pharmacological
categories, targets, pathways, and enzymes.76 To
forecast DDI incidents, Yang et al. suggested the
CNN-Siam algorithm, which makes use of the drug
multimodal information and a Siamese neural network
(SNN) architecture. SNNs have two or more identical
subnetworks with the same configuration,
specifications, and weights. All subnetworks undergo
identical parameter updates, and their output
feature vectors are compared to identify input-
output pairs with shared characteristics. CNN-Siam
learns a representation for an individual drug by
feeding its chemical substructure, target, and
enzyme information into two CNNs with shared
parameters; the resulting drug pair representations
are then fused and further sent to a multilayer
perceptron for classification.77 Another end-to-end
model, an attention-convolutional neural network
(ACNN), for predicting DDI from solely drug sequence
information (feature matrix) was given by Wang et
al. By assigning a different attention vector to each
atom in the drug feature matrix, ACNN was able to
simulate the intricate interaction between the drug
atoms.78 A unique neural technique to extract DDIs
from texts by utilizing drug molecular structure was
proposed by Asada et al. where textual drug pairs
are encoded using CNN, while their molecular pairs
are encoded using graph convolutional networks
(GCNs). The outputs of these two networks are
then combined for final prediction.79 CNN-based
models have proven their usefulness in extracting
and learning different drug representations to predict
DDIs, allowing for more accurate prediction of drug
efficacy and safety.

Drug Safety and Adverse Event Prediction:

Drug safety is a critical aspect of drug development
and involves the identification and mitigation of
potential adverse drug reactions (ADRs). While ML
algorithms have been widely utilized for ADR
prediction, only a small number of CNN-based models
currently exist; nonetheless, research into this area
has shown that CNNs can be useful for predicting
and detecting ADRs, which can lead to their early
discovery and elimination. Current CNN models
predict the safety profile of drugs based on their
chemical structure and physicochemical properties.
Chen et al. presented a novel CNN model to predict

drug ADRs with 88% accuracy from chemical
structures by using bioactivity data of FDA-approved
drugs.80 Yao et al. successfully trained a CNN model
with semantic embedding to predict the likelihood
of ADRs for a given drug using a dataset of drug
labels and their associated ADRS from the US Food
and Drug Administration (FDA).81 In another study
Dey et al. used SIDER database drug-ADR
information, to develop a neural fingerprint technique
that investigates all possible substructures present
in drug molecules up to a certain radius, where the
radius is defined as half of the maximum path length
between any two atoms of that substructure, and
trained a CNN framework with an attention
mechanism to identify which drug-molecule
substructures linked to a given ADR and also
determines if the substructures could be used to
anticipate ADRs in novel drugs. This study is helpful
for drug developers to discover problematic
substructures and may improve pipeline drug safety
reviews.82

Additionally, CNNs could be applied to predict adverse
events based on patient-specific factors, such as
genetic information, electronic medical/health
records (EMR/HER), and medical history.

Pharmaceutical Manufacturing:

Pharmaceutical manufacturing involves the
production of drugs in large quantities while ensuring
consistent quality and purity. CNNs have been used
to optimize various aspects of pharmaceutical
manufacturing, such as the optimization of production
processes and the detection of defects in drug
products. Additionally, CNNs have been applied in
the development of automated systems for quality
control and assurance. Optical coherence
tomography (OCT) is a real-time and contactless
process analytical technology (PAT) for solid dosage
form coating operations in the pharmaceutical
industry. Researchers have successfully employed
CNNs to evaluate OCT images for pharmaceutical
solid dosage forms using image data from both in-
and at-line OCT implementations and for monitoring
film-coated tablets and single- and multi-layer
pellets.83 Researchers have also used CNNs to
detect defects in tablet production and to monitor
the quality of drug products during the manufacturing
process.84

Drug Formulation and Delivery:

Drug formulation and delivery is a crucial aspect of
drug development that involves the development of
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safe and effective drug delivery systems. CNNs have
been used to optimize drug formulations by predicting
the stability, solubility, and bioavailability of drugs
based on their physicochemical properties.
Additionally, CNNs have been applied in the
development of drug delivery systems, such as
liposomes and nanoparticles, to improve drug
targeting and efficacy. For example, researchers
have used CNNs to predict the optimal size and
shape of nanoparticles for drug delivery.85 Recently,
using the position of the drug injection and the
geometry of the blood vessel as inputs, CNN has
been successfully used to develop a data-driven
reduced-order model (ROM) for real-time prediction
of the spatial-temporal drug trajectory and
concentration field in trans-arterial
chemoembolization therapy.86

Personalized Medicine:

To capture the unique characteristics of each
patient, personalized prediction models draw data
from cohorts of patients with comparable
characteristics. CNNs have demonstrated remarkable
performance in tasks such as tumor detection,
segmentation, and classif ication, aiding in
personalized medicine by providing precise and
individualized insights.87 These networks can capture
subtle visual cues and intricate spatial relationships
in medical images, enabling the identification of
biomarkers, early disease detection, and assisting
in treatment planning. The article highlights the
potential of CNNs in revolutionizing radiology and
emphasizes their contribution to personalized
medicine through the accurate and efficient analysis
of medical images. Suo et al. introduced a novel
time fusion CNN framework that learns patient
representations and measures pairwise similarity,
considering the temporal relationships and
contributions from different time intervals.88 The
framework aims to accurately identify similar patients
and utilizes the similarity scores for personalized
disease predictions, evaluating the effects of
different vector representations and similarity
learning metrics.

Other studies

The CNN application is not just limited to drug
research, but it has also proven to be useful in
other studies. Beck et al. utilized a pre-trained hybrid
CNN and RNN model called molecule transformer-
drug target interaction (MT-DTI) to predict whether
any commercial antiviral medicines would function

in SARS-CoV-2. Remdesivir, ritonavir, atazanavir,
efavirenz, and dolutegravir were computationally
identified for SARS-CoV-2 treatment.89

DeeplyTough, a 3D CNN model, quantifies pocket
similarity by analysing binding sites of
proteins without alignment. It encodes 3D protein
pockets into descriptor vectors to compute pairwise
Euclidean distances using a positive and negative
selection of proteins that bind chemically similar and
dissimilar ligands.90 CNN has also exhibited success
predicting protein structures in the absence of a
template structure.91 Tong et al. employed a CNN
model for analyzing protein structures to forecast
how mutations may alter protein structure, and study
amino acid microenvironments without any prior
information or feature assumptions. The method was
reported to double the accuracy of predictions
compared to models that necessitated the selection
of features by hand.92 Images of cells pre-treated
with a variety of drugs have been used by CNNs to
make predictions about their toxicity. The model
was able to effectively predict a broad variety of
toxicity pathways from different medicines, nuclear
stains, and cell lines.93 Finally, to extract biomedical
relationships from PubMed literature, Nourani et al.
created a hybrid transfer learning framework (Deep-
GDAE) using attrition-based BiLSTM and a CNN based
on textual feature extracted using BERT (Bidirectional
Encoder Representations from Transformers, a pre-
trained natural language processing model) and
BioBERT base models.94 

Future prospects and challenges

CNNs have demonstrated exponential development
across all fields as they excel at finding patterns
and features in various types of data (textual, image,
audio, video, time-series) with minimal pre-
processing, handling enormous volumes of data with
end-to-end training, attaining excellent accuracy
while being robust to scaling, rotation, and
translation invariance. It correctly performs the task
(classification, segmentation) by reducing the image
down to its fundamental features via convolutions
and pooling mechanisms. Compared to conventional
neural networks, they are easier to train owing to
relatively few initial parameters and the capacity of
convolutions to manage all hidden layer discoveries.
CNNs have also shown great promise in various
applications of pharmaceutical science, such as drug
discovery, molecular property prediction, and image-
based-disease diagnosis. CNNs could speed up drug
discovery by evaluating enormous databases of



chemical compounds and identifying promising drug
candidates or molecular targets (receptors) based
on their molecular features or structure, thereby
reducing the time and expense of drug development.
CNNs could be trained to design drug formulation
strategies, predict solubility (a critical factor in drug
formulation), and identify manufacturing defects.
Another area where CNNs can be employed directly
with pharmaceutical applications is analysing
microscopic images of cells and tissues to identify
disease states or drug effects. CNNs can also be
used in personalized medicine by analysing genetic
data to predict drug responses or identify potential
adverse reactions. This could lead to more effective
and safer treatment options for patients. Overall,
the future of CNNs in pharmaceutical science is very
promising. As technology advances, we can expect
to see even more applications in drug discovery,
personalized medicine, and other areas of
pharmaceutical research.

Despite the promising results obtained and bright
future, there are some challenges associated with
CNNs that need to be addressed.  First, training a
CNN model is computationally taxing and requires
considerable memory, necessitating the use of
graphics processing units (GPUs). Second, the lack
of large, diverse, and well-labeled datasets or
appropriate regularization limits CNN performance,
and they are susceptible to overfitting. Third, as
the CNN's depth increases, more and more input-
related data may be lost or "washed out" before it
reaches the output layer.2, 3,95 Short pathways
between layers and feed-forward networks, in which
each layer is connected to all other layers, have
been offered as potential solutions to these and
related issues.96 The application of CNNs in
pharmaceuticals is still in its early stages, and more
research is required to fully explore its potential.
Despite the challenges, CNNs offer a promising
approach to improving drug development and patient
outcomes.
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